Doctoral Thesis Candidate

Cellular and molecular basis of vestibular disorders

Our laboratory is seeking candidates to apply for upcoming calls for Doctoral Fellowships (FI and FPU). **Up to one year of salary is available immediately to support strong candidates during the application process.**

Candidates:
- We are looking for highly motivated students interested in sensory neuroscience.
- Very good academic records are required. The fellowships are competitive, and the academic qualifications are the evaluation item with a heaviest weight on the final score of the candidate.

Project:
Impaired function of the vestibular system in the inner ear results in disequilibrium and loss of gaze control. One possible cause is exposure to ototoxic chemicals. While acute high dose ototoxicity is well known to induce apoptosis (sometimes necrosis) of the vestibular sensory hair cells, our laboratory has recently discovered in animal models that other phenomena are involved in chronic low dose ototoxicity. The earliest loss of vestibular function is reversible, and associates with detachment of the sensory hair cells from the afferent neuron terminals (Sedó-Cabezón et al., 2015). Afterwards, the hair cells are eliminated by extrusion from the sensory epithelium, then causing permanent dysfunction.

Identifying the cellular and molecular basis of these phenomena and their relationship to the functional outcomes at the organism level will provide a new framework to understand vestibular dysfunction, vertigo and age-related loss of equilibrium, and hopefully lead to new therapeutic approaches of vestibular pathologies.

The laboratory has all the requirements for the application: the project is funded by MINECO and the team is a recognized SGR team by Generalitat de Catalunya.

Vestibular sensory epithelia by scanning electron microscopy and confocal fluorescence microscopy.

Related publications:

Contact:
Dr. Jordi Llorens, Departament de Ciències Fisiològiques, Campus de Bellvitge, Universitat de Barcelona, Tf: 93-402 4277, e-mail: jllorens@ub.edu