Neurodevelopmental Disorders
The development of the central nervous system is strictly modulated by genetic and environmental factors in a spatial-temporal fashion. Even mild disturbances in genes and/or environmental cues during critical periods of the pre- and post-natal development, lead to morphological and functional anomalies that will compromise the normal behaviour and cognitive function. By identifying risk factors and investigating their role in the central nervous system development, utilizing cutting-edge in vitro and in vivo technologies, this programme aims to design new and more effective strategies for therapeutic intervention.
Technologies & Methods
- Primary rodent and human neural cell cultures
- Reprogramming and Stem Cell Technologies
- CRISPR gene editing
- In utero electroporation
- Immunolabeling and in situ hybridisation in tissue and cell systems
- High-resolution microscopy
- Flow cytometry
- Mass-spectrometry
- Protein and RNA Molecular biology: Western Blot, Dot Blot, qPCR, Immunoprecipitation assays
- Bulk and Single-cell transcriptomics
- In vivo models of brain injury
- Epigenomics
- Deep Learning
- Image analysis
Research Team
Andrea Marti
Early Stage Researcher
Jose Pablo Soriano
Early Stage Researcher
Isabe lTurpin
Technician
Gisele Aguiar
Early Stage Researcher
Adriana Modrego-Muñoz
Early Stage Researcher
Laura Garcia-Gonzalez
Postdoctoral Researcher
Marta Cuenca Medina
Technician
Selected publications
Álvarez, Z., Ortega, J. A., Sato, K., Sasselli, I. R., Kolberg-Edelbrock, A. N., Qiu, R., Marshall, K. A., Nguyen, T. P., Smith, C. S., Quinlan, K. A., Papakis, V., Syrgiannis, Z., Sather, N. A., Musumeci, C., Engel, E., Stupp, S. I., & Kiskinis, E. (2023). Artificial extracellular matrix scaffolds of mobile molecules enhance maturation of human stem cell-derived neurons. Cell Stem Cell, 30(2), 219-238.e14. https://doi.org/10.1016/j.stem.2022.12.010
García-González, L., Martí-Sarrias, A., Puertas, M. C., Bayón-Gil, Á., Resa-Infante, P., Martinez-Picado, J., Navarro, A., & Acosta, S. (2023). Understanding the neurological implications of acute and long COVID using brain organoids. Disease Models & Mechanisms, 16(7). https://doi.org/10.1242/dmm.050049
Musokhranova, U., Grau, C., Vergara, C., Rodríguez-Pascau, L., Xiol, C., Castells, A. A., Alcántara, S., Rodríguez-Pombo, P., Pizcueta, P., Martinell, M., García-Cazorla, A., & Oyarzábal, A. (2023). Mitochondrial modulation with leriglitazone as a potential treatment for Rett syndrome. Journal of Translational Medicine, 21(1), 756. https://doi.org/10.1186/s12967-023-04622-5
Ortega, J. A., Sasselli, I. R., Boccitto, M., Fleming, A. C., Fortuna, T. R., Li, Y., Sato, K., Clemons, T. D., Mckenna, E. D., Nguyen, T. P., Anderson, E. N., Asin, J., Ichida, J. K., Pandey, U. B., Wolin, S. L., Stupp, S. I., & Kiskinis, E. (2023). CLIP-Seq analysis enables the design of protective ribosomal RNA bait oligonucleotides against C9ORF72 ALS/FTD poly-GR pathophysiology. Science Advances, 9(45). https://doi.org/10.1126/sciadv.adf7997
Smith, C. S., Álvarez, Z., Qiu, R., Sasselli, I. R., Clemons, T., Ortega, J. A., Vilela-Picos, M., Wellman, H., Kiskinis, E., & Stupp, S. I. (2023). Enhanced Neuron Growth and Electrical Activity by a Supramolecular Netrin-1 Mimetic Nanofiber. ACS Nano, 17(20), 19887–19902. https://doi.org/10.1021/acsnano.3c04572