Principal Investigators

Josep M. Canals

Associate Professor

Director of Creatio

Stem cells and regenerative medicine

Daniel del Toro

Full Professor

In vivo reprogramming during cortex development

Daniel Tornero

Assistant Professor

Neural stem cells and brain damage

Research team


Phil Sanders

Posdoctoral Researcher


Anna-Christina Haeb

Early Stage Researcher


Ainhoa Arcas

Early Stage Researcher


Cinta Gomis

Early Stage Researcher


Clelia Introna

Early Stage Researcher


Francisco J. Molina

Early Stage Researcher


Claudia Peregrina

Early Stage Researcher


Cristina Vila

Early Stage Researcher


Sofia Zaballa

Early Stage Researcher


Silvia Artigas



Georgina Bombau



Mireia Galofre



Anna Lopez



Veronica Monforte



Cristina Salado



Felipe Chiappe



Cristina Herranz



Unai Perpiña



Irene Porcar


Research Interest


The group of Stem Cells and Neurodevelopment puts together four principal investigators that cover large experience on neurodevelopment research, the use of stem cells for modeling and treatment of neurological disorders and in silico modelization of neurodevelopment and neurodegenerative diseases by machine learning. We are mainly interested in the use of mouse, human and in silico models to discover new treatments for neurological disorders based on cell therapy. All PIs participate in large national and international consortia, and have a large trajectory of international papers in outstanding journals. The group share a large number of techniques including GMP production of Advance Therapy Medicinal Products.

Technologies & Methods


  • Human stem cell differentiation
  • Neuroimaging
  • High throughput Calcium imaging
  • Advanced microscopy and confocal microscopy
  • Histological analysis
  • Stereotaxic cell transplantation and viral injections in mice and rats
  • High cell content imaging
  • Conventional and Quantitative PCR
  • Immunostaining and stereological analysis
  • Western blot, ELISA, enzymatic activity evaluation
  • Intra-utero injections of cells and vectors
  • in vivo reprogramming
  • Brain-on-chip systems and microfluidic cultures
  • Clearing of whole-mount samples
  • Machine learning (vector machine, logistic regression, random forest or a Naïve Bayes model)
  • In silico modeling (neurodevelopment and neurodegenerative diseases)
  • Clinical production of ATMPs

Active Projects


    • Adquisición y puesta a punto de una bio-impresora 4D guiada por láser para la producción de medicamentos de terapias avanzadas (ATMPs) en condiciones GMP. Ministerio de Ciencia e Innovación. EQC2021-006818-P. Josep Maria Canals.


    • Ajut per a la intensificació de les activitats de transferència per al curs 2021-22. Modalitat A. Universitat de Barcelona. Josep Maria Canals


    • Atorgament d’un ajut de la convocatòria del Programa d’Intensificació de l’Activitat Investigadora Internacional (2020-21). Universitat de Barcelona. Josep Maria Canals


    • Cèl·lules mare i medicina regenerativa. Agència de Gestió d’Ajuts Universitaris i de Recerca. 2017SGR1408. Josep Maria Canals


    • Contracte del Programa Ramon y Cajal. Ministerio de Economia y Competitividad. RYC-2017-23486. Josep Maria Canals


    • Estudio de la implantantación de las alteraciones del neurodesarrollo en la enfermedad de Huntington. Ministerio de Ciencia, Innovación y Universidades. RTI2018-099001-B-I00. Josep Maria Canals


    • In vivo reprogramming to rescue alterations in Huntington’s disease. Fundació ‘La Caixa’. HR21-00622. Josep Maria Canals.


    • Mejora de la integración funcional de progenitores neurales derivados de hiPSC. Ministerio de Ciencia e Innovación. PID2020-118120RB-I00. Daniel Tornero.


    • Modelización de enfermedades neurodegenerativas. Ministerio de Ciencia e Innovación. EIN2020-112381. Josep Maria Canals


    • Nou protoCOL d’aïllament de MONÒcits per aplicacions terapèutiques al costat del pacient (MONOCOL). INNOTEC. ACE034/21/000039. ACCIÓ. Agència de Suport a l’Empresa Catalana. ACE034/21/000039. Josep Maria Canals.


    • Nuevos mecanismos de migración neuronal implicados en el plegamiento de la corteza cerebral. Ministerio de Ciencia, Innovación y Universidades. RTI2018-095580-A-100. Daniel del Toro.


    • Nuevos mecanismos de migración neuronal implicados en el plegamiento de la corteza cerebral. Ministerio de Ciencia, Innovación y Universidades. RTI2018-095580-A-100. Daniel del Toro.


    • RICORDS-TERAV. Instituto de Salud Carlos III (ISCIII). Ministerio de Ciencia e Innovación. RD21/0017/0020. Josep Maria Canals


    • Training for Advanced Stem Cell Technologies in Neurology (ASCTN-Training). European Union. MSCA-ITN-2018. 813851. Josep Maria Canals.


    • 16 Confidential agreements.

Featured Publications


    • Palma-Tortosa, S., Coll-San Martin, B., Kokaia, Z., & Tornero, D. (2021). Neuronal Replacement in Stem Cell Therapy for Stroke: Filling the Gap. Frontiers in Cell and Developmental Biology, 9, 709.


    • SC4HD Consortium (2021). Stem Cells for Huntington’s Disease (SC4HD): An International Consortium to Facilitate Stem Cell-Based Therapy for Huntington’s Disease. Journal of Huntington’s Disease, 10.3233/JHD-210473. Advance online publication.


    • Palma-Tortosa, S., Tornero, D., Hansen, M. G., Monni, E., Hajy, M., Kartsivadze, S., Aktay, S., Tsupykov, O., Parmar, M., Deisseroth, K., Skibo, G., Lindvall, O., & Kokaia, Z. (2020). Activity in grafted human iPS cell–derived cortical neurons integrated in stroke-injured rat brain regulates motor behavior. Proceedings of the National Academy of Sciences, 117(16), 9094–9100.


    • Peregrina, C., & Del Toro, D. (2020). FLRTing Neurons in Cortical Migration During Cerebral Cortex Development. Frontiers in Cell and Developmental Biology, 8, 578506.


    • Comella-Bolla, A., Orlandi, J. G., Miguez, A., Straccia, M., García-Bravo, M., Bombau, G., Galofré, M., Sanders, P., Carrere, J., Segovia, J. C., Blasi, J., Allen, N. D., Alberch, J., Soriano, J., & Canals, J. M. (2020). Human Pluripotent Stem Cell-Derived Neurons Are Functionally Mature In Vitro and Integrate into the Mouse Striatum Following Transplantation. Molecular Neurobiology, 57(6), 2766–2798.


    • Salado-Manzano, C., Perpiña, U., Straccia, M., Molina-Ruiz, F. J., Cozzi, E., Rosser, A. E., & Canals, J. M. (2020). Is the Immunological Response a Bottleneck for Cell Therapy in Neurodegenerative Diseases?. Frontiers in Cellular Neuroscience, 14, 250.


    • Del Toro, D., Ruff, T., Cederfjäll, E., Villalba, A., Seyit-Bremer, G., Borrell, V., & Klein, R. (2017). Regulation of Cerebral Cortex Folding by Controlling Neuronal Migration via FLRT Adhesion Molecules. Cell, 169(4), 621–635.e16.


    • del Toro, D., Carrasquero-Ordaz, M. A., Chu, A., Ruff, T., Shahin, M., Jackson, V. A., Chavent, M., Berbeira-Santana, M., Seyit-Bremer, G., Brignani, S., Kaufmann, R., Lowe, E., Klein, R., & Seiradake, E. (2020). Structural Basis of Teneurin-Latrophilin Interaction in Repulsive Guidance of Migrating Neurons. Cell, 180(2), 323-339.e19.


    • Tornero, D., Tsupykov, O., Granmo, M., Rodriguez, C., Grønning-Hansen, M., Thelin, J., Smozhanik, E., Laterza, C., Wattananit, S., Ge, R., Tatarishvili, J., Grealish, S., Brüstle, O., Skibo, G., Parmar, M., Schouenborg, J., Lindvall, O., & Kokaia, Z. (2017). Synaptic inputs from stroke-injured brain to grafted human stem cell-derived neurons activated by sensory stimuli. Brain : Journal of Neurology, 140(3), 692–706.