VISION AND CONTROL OF ACTION

Principal Investigators

Cristina de la Malla

Assistant Professor

Eye movements, sensori-motor decision-making, Perception and action

Joan Lopez-Moliner

Full professor

Optic flow, visual motion, sensori-motor decision-making, Perception and action

Javier Rodriguez-Ferreiro

Full Professor

Reasoning, language and learning

Hans Super

Distinguished Investigator

Fixational eye movements and cognitive processing

Matthias Sven Keil

Associate Professor

Computational modeling biologically inspired image and video processing, networks and complex systems.

Daniel Linares Herreros

Assistant Professor

Perceptual decision-making in health and disease

Research team

 

Itxaso Barberia

Associate Professor

 

Mari Aguilera

Associate Professor

 

Angels Colome

Associate Professor

 

Elisabet Tubau

Associate Professor

 

Borja Aguado

Early Stage Researcher

 

Jaume Boned

Early Stage Researcher

 

Marta Natalia Torres

Early Stage Researcher

Research Interest

 

This programme focuses on how people make perceptual and sensorimotor decisions and cognitive decisions. In daily life, humans make decisions at multiple levels. They have to decide between competing actions or responses within complex and rich environments. Optimal decision making depends on people encoding and decoding sensory information reliably. One of the research interests is how humans decode sensory information to reflect the 3D layout of the environment in order to unfold motor actions more efficiently. Also, this programme tackles how motor predictions are integrated with sensory feedback information (e.g. visual, proprioceptive, auditory) in order to make the necessary motor adjustments to accomplish the goals: minimising errors or maximizing gains. From a computational point of view, the underlying processes that lead to optimal decisions can be characterised using optimality frameworks. Finally, the same principles are used to address decision making at a more central level (e.g. cognitive tasks).

Technologies & Methods

 

  • Psychophysics
  • Virtual reality
  • Psychophysical techniques
  • Eye movement recordings
  • Computer simulations of neural network models

Featured Projects

 

    • Fundamento cognitivo de las creencias pseudocientíficas. Agencia Estatal de Investigación. PID2019-106102GB-I00. Javier Rodriguez-Ferreiro

 

    • Muestreo activo del movimiento 3D y flujo óptico. Ministerio de Economia y Competitividad. PSI2017-83493-R. Joan Lopez-Moliner

 

    • Perception and Action in Complex Environments (PACE). European Union. H2020-MSCA-ITN-2014-642961. Joan Lopez-Moliner

 

    • Sincronización de movimientos oculares y sincronización de las neuronas. Ministerio de Ciencia, Innovación y Universidades. PGC2018-096074-B-I00. Hans Super

 

    • Un Estudio Computacional de mecanismos de codificación predictiva para la percepción visual del movimiento. Ministerio de Ciencia, Innovación y Universidades. PGC2018-099506-B-I00. Matthias Sven Keil

 

    • Visió i Control de l’Acció (VISCA). Agència de Gestió d’Ajuts Universitaris i de Recerca. 2017SGR48. Joan Lopez-Moliner

Featured Publications

 

    • Jiménez, E. C., Avella-Garcia, C., Kustow, J., Cubbin, S., Corrales, M., Richarte, V., Esposito, F. L., Morata, I., Perera, A., Varela, P., Cañete, J., Faraone, S. V., Supèr, H., & Ramos-Quiroga, J. A. (2020). Eye Vergence Responses During an Attention Task in Adults With ADHD and Clinical Controls. Journal of Attention Disorders, 1087054719897806. Advance online publication. https://doi.org/10.1177/1087054719897806

 

    • Jiménez, E. C., Romeo, A., Pérez Zapata, L., Solé Puig, M., Bustos-Valenzuela, P., Cañete, J., Varela Casal, P., & Supèr, H. (2020). Eye vergence responses in children with and without reading difficulties during a word detection task. Vision Research, 169, 6–11. https://doi.org/https://doi.org/10.1016/j.visres.2020.02.001

 

    • Cámara, C., López-Moliner, J., Brenner, E., & de la Malla, C. (2020). Looking away from a moving target does not disrupt the way in which the movement toward the target is guided. Journal of Vision, 20(5), 5. https://doi.org/10.1167/jov.20.5.5

 

    • Linares, D., Aguilar-Lleyda, D., & López-Moliner, J. (2019). Decoupling sensory from decisional choice biases in perceptual decision making. eLife, 8, e43994. https://doi.org/10.7554/eLife.43994

 

    • Jörges, B., & López-Moliner, J. (2019). Earth-Gravity Congruent Motion Facilitates Ocular Control for Pursuit of Parabolic Trajectories. Scientific Reports, 9(1), 14094. https://doi.org/10.1038/s41598-019-50512-6

 

 

    • Tubau, E., Rodríguez-Ferreiro, J., Barberia, I., & Colomé, À. (2019). From reading numbers to seeing ratios: a benefit of icons for risk comprehension. Psychological Research, 83(8), 1808–1816. https://doi.org/10.1007/s00426-018-1041-4

 

    • Lerer, A., Supèr, H., & Keil, M. S. (2019). Luminance gradients and non-gradients as a cue for distinguishing reflectance and illumination in achromatic images: A computational approach. Neural Networks, 110, 66–81. https://doi.org/10.1016/j.neunet.2018.11.001

 

    • Aguilar-Lleyda, D., Tubau, E., & López-Moliner, J. (2018). An object-tracking model that combines position and speed explains spatial and temporal responses in a timing task. Journal of Vision, 18(12), 12. https://doi.org/10.1167/18.12.12

Knowledge transfer & Innovation

 

    • Measuring and improving attention. EP20382992.4. Hendrik Anne Super

 

    • Method of Measuring Attention. EP12380018.

 

    • Method of Measuring Attention. *PCT/*EP2012/076654.

 

    • Sistema y procedimiento de medir la atención. ES2589000 T3. Hendrik Anne Super